The Role of Physics in Society
by Derek Purdy
If we could get into one of those wonderful Wellsian time machines, all shining oak and glass, with polished brass handles and instruments, and ride it back to some time in the latter half of the nineteenth century, we would encounter a very different world from the one of today. Especially for Americans, it is difficult to conceive of a world where the United States counted for relatively little on the world stage. The same applied even more to all the other countries of the Americas. Except for Canada and Cuba, the whole continent had won political independence from Europe during that century, but it was still perceived as an extension of European cultures, with limited input in world affairs.
The whole world was run, in effect, from a handful of Western European countries, led by Britain which, even without the United States, had an empire that covered about one quarter of the globe. Furthermore, it was by far the leading manufacturer of machinery, armaments and textiles in the world, with the Bank of England holding most of the gold used in world trade. France also had a very large empire and so did some very small European countries, like Holland, Belgium and Portugal. Germany and Italy were occupied for many years during this period with unifying their countries under one central authority and therefore missed out on most of the empire building activity, but Germany especially was rapidly catching up with Britain as a leading manufacturing nation by the end of that century.
Looking at the size of all these European countires on the map, one can only wonder how it came about that they were running most of the world at that time. What made their influence so overwhelming when, only a few centuries before, they had seemed on the verge of extinction from the black death? The answer to this question leads into the subject of this article.
What made the small Western European nations invincible at that time were the practical applications of natural laws, contained in Newton’s monumental synthesis, the Principia Mathematica, published in 1687. Only four years before that date, Western Europe had been very nearly overrun by the Ottoman Turks and was only saved by the opportune arrival of the king of Poland, Jan Sobieski, who rode his cavalry to the aid of the beleagured Duke of Lorraine and his Christian coalition, fighting a desperate battle bfore the gates of Vienna. And a scant two hundred years later, the flood of inventions derived from applying the basic laws of physics enabled these same endangered little countries to rule the world.
Was that all there was to the story? If we had made our time machine land somewhere in England during this period, the latter half of the nineteenth century, we would have encountered some appalling and, to us today, totally unacceptable social conditions. But there would have been something else. English society at that time exuded an underlying confidence and certainty that we can only envy today. They were looking to science to solve all their problems by simply continuing along the same path they had been following for over a hundred years. And by science they meant the scientific way of looking at things, which meant not only building better steam engines, roads, railroads and ships, but also better social systems and laws, founded not on hereditary privilege but on usefulness to the community. They knew they still had plenty of work left but they felt they were on the right path and the coming twentieth century would bring very great benefits and solutions to problems.
Where did this “scientific way of looking at things” come from and why did it suddenly provide such an impetus to a few Western European nations? The answer lies not with Newton but beyond him, to Galileo. Galileo founded modern physics by providing the axiomatic postulates that defined this “scientific way” for the future. He first of all secularized science by removing God from the picture and installing nature and her laws in His place. Nature was all that was needed to explain the physical world in mathematical (scientific) terms. Then he concentrated the focus of his new physics on just matter and motion. What causes a change in motion is a physical force and these are the realities dealt with by Newton.
Galileo was a revolutionary innovator when it came to viewing the world. He looked at it analytically, without feeling any personal connection with the objects he was analyzing. This change from the medieval, participatory, experience of the world enabled Galileo and later thinkers like Newton to express natural phenomena and natural laws in mathematical, logical terms. The previously impenetrable laws of nature were explained in simple, rational ways that ordinary people could understand. They could see that, if you confined God and the upper world to a realm of belief only, the only reality you had to deal with in nature consisted of the physical objects that, in Lord Kelvin’s phrase, were “quantifiable” and “measurable”.
By the end of the nineteenth century, the whole of nature was becoming a well-lighted room, with every new advance in science adding to the brightness of the illumination. It was fully expected that physics would finish its theoretical work very soon. As the same Lord Kelin said in the 1880s: “There is nothing new to be discovered in physics now; all that remains is more and more precise measurement”.
Here, then, is the origin of that confidence and certainty which was such a feature of Victorian society, which could be seen in any portrait of the plump and prosperous persons of the new moneyed classes of the time. There was complete harmony between the way people experienced the world as the only solid reality and the way science explained this world in laws that were predictable and logical, with causes leading to their calculable effects as certainly as billiard balls colliding on a table.
Then came the twentieth century and physics breached the atomic barrier. The solid reality of physical objects (which Newton dealt with) disintegrated in the subatomic world of particles. It became obvious that these particles were not just very small bits of the same matter that people were familiar with. As time went on and quantum mechanics kept gaining ground, the very reality of the existence of such particles as separate entities became doubful. One of the greatest physicists of the twentieth century, Werner Heisenberg, put it this way:
“In the experiments about atomic events we have to do with things and facts, the phenomena that are just as real as any phenomena in daily life. But the atoms or elementary particles themselves are not real; they form a world of potentialities or possibilities rather than of things or facts”.
But any object in nature that Newton dealt with is simply composed of a very large number of these “atoms or elementary particles”. If these are not real and the objects themselves are real, where does reality begin? Is reality merely a function of the number of atoms you can put together? We can begin to see why we no longer enjoy that feeling of certainty and confidence in having the right answers which our Victorian ancestors laid claim to.
We still, or at least most of us do, feel the world as Galileo did. We still feel that the physical objects of nature are the only solid reality, and this includes gases, which may not be visible but which we know consist of just those same “atoms and elementary particles” whose reality can, apparently, no longer be taken for granted. Our science today no longer reflects the way we feel about the world. The old harmony is gone. However, most of us still have faith in science’s ability to explain the world to us. In Newton’s time, science was readily understood by educated people. His laws could be taught to schoolchildren. Even if he could not really explain what gravity actually was, Newton proved mathematically that its operation could be explained successfully by saying that it worked in direct proportion to the masses of the bodies involved and in inverse proportion to the square of the distance between them. Today, the mathematics of physics has become so difficult that only a small group of specialists can understand it. Ordinary people, even if they are reasonably well acquainted with science, can no longer contribute to the debate in terms of the mathematical work involved.
However, physics has now reached the point where in both theory and practice in, for instance quantum mechanics, the consequences and implications of the work done are philosophical as well as mathematical. This may have the effect of bringing this very remote and difficult science once more into an area of more public debate. The mathematics would, of course, remain off-limits to ordinary mortals, but the conceptual structure that Galileo bequeathed to later thinkers, especially with regard to reality, might need revision and others besides theoretical physicists might usefully be brought into the picture. Galileo, like most educated people of his time, was well versed in the Platonic concepts of reality. To Plato, the knowledge to be gained from the physical world was fleeting and unreliable, being merely the subjective result of our sense perceptions. Real, true knowledge, which did not depend on human senses and was therefore objective, was to him a property only of the upper, divine world. However, when Galileo came to stating his axiomatic postulates regarding future scientific methods, he felt that matter and motion – and only matter and motion – were suitable for science because they did not depend on any human presence or any human senses. He felt that these two “qualities” were independently (and therefore objectively) real. His thinking in this regard affected the course of the entire future of physics, though in time, not just matter and motion but all physical phenomena came to be regarded as independently (and therefore objectively) real, as we have seen.
However, physics, in its own, normal development in the last hundred years, has come to realize that all physical phenomena, perceived through the senses, must be subjective in nature. Even matter and motion involve the sense of sight and Galileo erred in thinking that these two qualities of the physical world could somehow be considered objective, or independent of man’s senses. But if everything we perceive in nature has, by definition, to be subjective, then no physical phenomena can have an independent identity or history of their own, which would cause very serious rethinking about the early periods of this earth, before the appearance of man. For these reasons, it seems reasonable to suppose that our concepts of reality in modern physics are the ones that most need new thinking, so that a revised framework of concepts might be worked out, within which the physics of the future can operate.
Werner Thurau was born in December 1927, in Havana, Cuba. In 1929, his family returned to his father’s native Germany. He spent the entire 1930s in Berlin, but came to England in 1939 and was then further educated in that country, ending with an engineering degree from London University. His further career took him all over the world on technical projects, moving first to Mexico and then to the United States, where he lives now. At school in England, he was exposed early in life to the world of ideas. Some of his teachers were friends of C.S. Lewis and Lewis’s Oxford group, the Inklings, and his father was a philosophical bookworm. Werner combined this background with a lifelong interest in physics, especially modern physics after it breached the atomic barrier. This interest extended to Galileo, the founder of our age, and what made him so different from others of his time, as well as to the effect physics has had on other related sciences, such as evolutionary theory (and its polar opposite, creationism). He came to see that the latest developments in physics bring in subjects not normally associated with a book on that science, such as consciousness, reality concepts and even ethics. It is the reality concepts of Galileo that have most haunted physics ever since and need revision.
For further thoughts on such a revision, visit: http://www.galileoshadow.com